Intrinsic potential of cell membranes: opposite effects of lipid transmembrane asymmetry and asymmetric salt ion distribution.

نویسندگان

  • Andrey A Gurtovenko
  • Ilpo Vattulainen
چکیده

Using atomic-scale molecular dynamics simulations, we consider the intrinsic cell membrane potential that is found to originate from a subtle interplay between lipid transmembrane asymmetry and the asymmetric distribution of monovalent salt ions on the two sides of the cell membrane. It turns out that both the asymmetric distribution of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) lipids across a membrane and the asymmetric distribution of NaCl and KCl induce nonzero drops in the transmembrane potential. However, these potential drops are opposite in sign. As the PC leaflet faces a NaCl saline solution and the PE leaflet is exposed to KCl, the outcome is that the effects of asymmetric lipid and salt ion distributions essentially cancel one another almost completely. Overall, our study highlights the complex nature of the intrinsic potential of cell membranes under physiological conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Membrane potential and electrostatics of phospholipid bilayers with asymmetric transmembrane distribution of anionic lipids.

It is well-established that native plasma membranes are characterized by an asymmetric distribution of charged (anionic) lipids across the membrane. To clarify how the asymmetry can affect membrane electrostatics, we have performed extensive atomic-scale molecular dynamics simulations of asymmetric lipid membranes composed of zwitterionic (phosphatidylcholine (PC) or phosphatidylethanolamine (P...

متن کامل

Asymmetry of lipid bilayers induced by monovalent salt: atomistic molecular-dynamics study.

Interactions between salt ions and lipid components of biological membranes are essential for the structure, stability, and functions of the membranes. The specific ionic composition of aqueous buffers inside and outside of the cell is known to differ considerably. To model such a situation we perform atomistic molecular-dynamics (MD) simulations of a single-component phosphatidylcholine lipid ...

متن کامل

Dynamic transbilayer lipid asymmetry.

Cells have thousands of different lipids. In the plasma membrane, and in membranes of the late secretory and endocytotic pathways, these lipids are not evenly distributed over the two leaflets of the lipid bilayer. The basis for this transmembrane lipid asymmetry lies in the fact that glycerolipids are primarily synthesized on the cytosolic and sphingolipids on the noncytosolic surface of cellu...

متن کامل

Meet Me on the Other Side: Trans-Bilayer Modulation of a Model Voltage-Gated Ion Channel Activity by Membrane Electrostatics Asymmetry

While it is accepted that biomembrane asymmetry is generated by proteins and phospholipids distribution, little is known about how electric changes manifested in a monolayer influence functional properties of proteins localized on the opposite leaflet. Herein we used single-molecule electrophysiology and investigated how asymmetric changes in the electrostatics of an artificial lipid membrane m...

متن کامل

High-throughput formation of lipid bilayer membrane arrays with an asymmetric lipid composition

We present a micro-device in which more than 10,000 asymmetric lipid bilayer membranes are formed at a time on micro-chamber arrays. The arrayed asymmetric lipid bilayers, where lipid compositions are different between the inner and outer leaflets, are formed with high efficiency of over 97% by injecting several types of liquids into a micro-device that has hydrophilic-in-hydrophobic surfaces. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 113 20  شماره 

صفحات  -

تاریخ انتشار 2009